Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A large fraction of white dwarfs (WDs) have metal-polluted atmospheres, which are produced by accreting material from remnant planetary systems. The composition of the accreted debris broadly resembles that of rocky Solar system objects. Volatile-enriched debris with compositions similar to long-period comets (LPCs) is rarely observed. We attempt to reconcile this dearth of volatiles with the premise that exo-Oort clouds (XOCs) occur around a large fraction of planet-hosting stars. We estimate the comet accretion rate from an XOC analytically, adapting the ‘loss cone’ theory of LPC delivery in the Solar system. We investigate the dynamical evolution of an XOC during late stellar evolution. Using numerical simulations, we show that 1–30 per cent of XOC objects remain bound after anisotropic stellar mass-loss imparting a WD natal kick of $${\sim}1 \, {\rm km \, s^{-1}}$$. We also characterize the surviving comets’ distribution function. Surviving planets orbiting a WD can prevent the accretion of XOC comets by the star. A planet’s ‘dynamical barrier’ is effective at preventing comet accretion if the energy kick imparted by the planet exceeds the comet’s orbital binding energy. By modifying the loss cone theory, we calculate the amount by which a planet reduces the WD’s accretion rate. We suggest that the scarcity of volatile-enriched debris in polluted WDs is caused by an unseen population of 10–$$100 \, \mathrm{au}$$ scale giant planets acting as barriers to incoming LPCs. Finally, we constrain the amount of volatiles delivered to a planet in the habitable zone of an old, cool WD.more » « less
-
Abstract Tidal heating on Io due to its finite eccentricity was predicted to drive surface volcanic activity, which was subsequently confirmed by the Voyager spacecraft. Although the volcanic activity in Io is more complex, in theory volcanism can be driven by runaway melting in which the tidal heating increases as the mantle thickness decreases. We show that this runaway melting mechanism is generic for a composite planetary body with liquid core and solid mantle, provided that (i) the mantle rigidity,μ, is comparable to the central pressure, i.e.,μ/(ρgRP) ≳ 0.1 for a body with densityρ, surface gravitational accelerationg, and radiusRP; (ii) the surface is not molten; (iii) tides deposit sufficient energy; and (iv) the planet has nonzero eccentricity. We calculate the approximate liquid core radius as a function ofμ/(ρgRP), and find that more than 90% of the core will melt due to this runaway forμ/(ρgRP) ≳ 1. From all currently confirmed exoplanets, we find that the terrestrial planets in the L 98-59 system are the most promising candidates for sustaining active volcanism. However, uncertainties regarding the quality factors and the details of tidal heating and cooling mechanisms prohibit definitive claims of volcanism on any of these planets. We generate synthetic transmission spectra of these planets assuming Venus-like atmospheric compositions with an additional 5%, 50%, and 98% SO2component, which is a tracer of volcanic activity. We find a ≳3σpreference for a model with SO2with 5–10 transits with JWST for L 98-59bcd.more » « less
-
ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $$10\, {\rm M}_{\odot }$$ ($$15\, {\rm M}_{\odot }$$) primary star interacting with a $$1.4\, {\rm M}_{\odot }$$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study.more » « less
An official website of the United States government
